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If the variance of a Gaussian spin-glass Hamiltonian grows like the volume the model
fulfills the Ghirlanda-Guerra identities in terms of the normalized Hamiltonian covari-
ance.
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1. INTRODUCTION

In the last decade new ideas and technical methods have been developed in the
attempt to build the spin glass theory on rigorous mathematical grounds. The most
recent example is the interpolation strategy®!) introduced to prove the existence of
the thermodynamic limit in the Sherrington-Kirkpatrick®" model and its use in the
proof of the Parisi free energy>® of the same model'®3?) and in the identification
of an extended variational principle.?)

The first basic contribution in the field came with the work by Guerra(!®)
on how to prove some correlation identities of the Sherrington-Kirkpatrick model
that were only assumed within the ultrametric structure of the Parisi solution.
Those identities were later generalized by Ghirlanda-Guerra®®? and are playing an
increasingly important role in the mathematical approach to the low temperature
spin glass phase. For instance they were used in ref. 33 to prove that, for the
SK model with random magnetic field, the probability distribution of the overlap
q is, in the thermodynamic limit, supported only on positive values of ¢ (see
also ref. 4 and references therein). The Ghirlanda-Guerra identities are conse-
quence of a very basic principle of statistical mechanics i.e. the vanishing of the
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fluctuation of the energy per particle: at increasing volumes the energy per particle
approaches a constant with respect to the equilibrium measure. Within the non-
disordered classical cases all that simply implies the finiteness of the specific heat
almost everywhere in the temperature (see nevertheless the implications in classi-
cal mean-field models!'V); however in the spin glass cases, where the equilibrium
quenched state is a properly intertwined composition of the Boltzmann-Gibbs and
the disorder measures, its consequences are way more subtle. The work® led to the
identification of the stochastic stability, ") an invariance property of the quenched
state under a class of suitable perturbations. Subsequently stochastic stability was
developed and used to clarify the relation between the equilibrium and the off-
equilibrium properties in the spin glass phase.(!®!”) Recently stochastic stability
has been classified®> and placed on rigorous grounds in ref. 19, where its relation
with the mentioned identities is also discussed.

In this work we obtain a condition that guarantees the validity of the
Ghirlanda-Guerra identities: our result states that they hold true whenever the
variance of the Hamiltonian function grows like the volume. Such a condition
is the same that ensures the boundedness (and existence as it was proved in ref. 7)
of the thermodynamic limit and applies to every spin glass model studied so far:
to the Edwards-Anderson model, to the finite dimensional cases with summable
or non-summable interactions in the sense of Kanin and Sinai,®® to the mean field
cases like SK, p-spin, REM and GREM, up to the general spin glass model of
subset interaction on which our general condition has been tailored. It is important
to stress that the identities we prove hold in terms of the normalized Hamiltonian
covariance which has a different spin expression in each model: for instance in
the SK model it coincides with the square power of the overlap function, while for
the EA model it is the link overlap.(®25 The strategy we use to achieve the result
relies on very simple methods like the bound on martingale sums and classical
inequalities.

The paper is organized in definitions (Sec. 2), results (Sec. 3) and proofs
(Sec. 4).

2. DEFINITIONS

We consider a disordered model of Ising configurations 0, = +1,n € A C
7@ for some d-parallelepiped A of volume |A|. We denote X, the set of all
o = {0p}nen, and |Za| =221 In the sequel the following definitions will be
used.

1. Hamiltonian.
For every A C Z¢ let {Ha(0)}yex, be a family of 2!A! translation in-
variant (in distribution) centered Gaussian random variables defined, in
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analogy with,*” according to the very general representation

Hyo) = = ) Jxox @
XCA
where
Oy = l_[ agj, (22)
ieX

(oy = 0) and the J’s are independent Gaussian variables with zero mean
Av(Jy) = 0, (2.3)
and (translation invariant) variance
Av(J3) = A% (2.4)
2. Covariance matrix and generalized overlap.

Ca(0.7) = AV(HA(0)HA(T)) = Y AjoxTy. (2.5)
XCA
By the Schwartz inequality
ICal0. D) < VCa(0.0)Ca(T.T) = D A% (2.6)

XCA

for all o and 7. The generalized overlap is

1
CA(U’ T) = _CA(U, T) (27)
[A]
3. Thermodynamic stability.
The Hamiltonian (2.1) is thermodynamically stable if it exist a constant
¢ < oo such that

1 1
sup —Ca(o,0) = sup — » A2 < ¢ (2.8)
aczi A AcZd |A|)§ !

Together with translation invariance a condition like the (2.8) is equivalent
to

AZ
Zﬁ < G (2.9)

X0
In fact
A2

2 X _ A%(
YAy = sz = |A| X (2.10)

XCA xeA Xax X>0
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Alternatively, summing over the equivalence classes X of the translation
group, (2.8) is equivalent to

YAy < e (2.11)
X

Thanks to the (2.6) a thermodynamically stable model fulfills the bound
Calo, 1) < C|A] (2.12)

and has a order 1 generalized overlap.

. Random partition function.
Z(B) = Y e P, (2.13)
0eT,
. Random free energy.
—BF(B) = A(B) := InZ(p). (2.14)

. Random internal energy.

ZUE - Hy (G)e—ﬁHA(ﬂ)

B S 1
. Quenched free energy.
~BF(B) = A(B) = AV(A(B)). (2.16)
. R-product random Gibbs-Boltzmann state.
Q(-) = UU)Z;R)(—W L ([Zz;);( )]. @.17)
. Quenched equilibrium state.
(—) = AV(R(—)). (2.18)

Observables.

For any smooth bounded function G(c,) (without loss of generality we
consider no explicit dependence of G on the J’s and assume |G| < I;
no assumption of permutation invariance on G is made) of the covariance
matrix entries we introduce the random (with respectto (—)) R x R matrix
of elements {g; ;} by the formula

(G(q)) = AV((G(ca)))- (2.19)
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E.g.: G(cp) = ca (a“), 0(2))01\ (0(2), 0(3))

[ i
Yot g0t (6D, 0@) e (6@, 09) e Akt ))]) (2.20)

= A
(91.292.3) N ( [ZB)P?

3. RESULTS

The Ghirlanda-Guerra identities admit several equivalent formulations.
They can be expressed in terms of factorization properties of the quenched
distribution of the generalized overlap™®2°-33) as well as in terms of expectations
of observables. In this work we chose the second approach because it allows
to distinguish the identities in two classes with different physical meaning: the
first expresses the regularity with respect to the temperature, the second the
self-averaging of intensive quantities.

In relation to the definitions of the previous section it holds the following:

Theorem 1. The quenched equilibrium state of a thermodynamically stable
Hamiltonian fulfills, for every observable G and every temperature interval
[,812, ,322] the following identities in the thermodynamic limit

g i
Ali/HZld . <Z G4k —2RG ) qiri1+ RR+ 1)GQR+1,R+2>d.32 =0
BL \ki=1 =1
ket
(3.21)

BIE
lim [Z(G gk r+1) = (R + 1(G g ry1, r12) +(G) (41,2):| dg* = 0

A 74 2
7 1 k=1

(3.22)
Remark 1. The two previous relations when applied to G(g) = ¢, combined
together lead to the well known!®-23:
15 1
(912923) = §<q )+ 7 (q) (3.23)
oo 2, 02
(q1293.4) = 5(‘] )+ 3 (q) (3.24)

whose validity holds in the sense of the previous theorem i.e. in B-average in the
thermodynamic limit.
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Remark 2. It is straightforward to verify that the condition (2.8) of thermo-
dynamic stability holds for all the known spin glass models. Here are a few
examples:

1. The Edwards-Anderson model.'® The nearest neighbor case is defined
by A2 = 1if X = (n, n")and |n — n’| = 1. The condition (2.8)is verified
byc=d.

2. More generally one consider still a two body interaction with A2 =
|n — n'|724%. The regime o > 1 comes from a summable interaction.
The condition (2.8) is verified by ¢ = 2o — 1)~ for all « > 1/2 thus
including also the non summable case.??

3. The SK model,®*" Although it is not a finite dimensional model it may
still be embedded in Z, with A3 = 0 unless |X| =2 and A; ; = N™!
with N = |A|. It obviously fulfills condition (2.8) with ¢ = 1.

4. The p-spin. Analogously as above Ay = 0if | X| # p and A} = 1/N?
otherwise. It is thermodynamically stable with ¢ = 1

5. The REM"® and GREMU¥ models. Although they have not been de-
fined as spin models their discrete nature allows to associate to them a
spin Hamiltonian. For instance it is easy to prove that the REM is rep-
resented by the Hamiltonian (2.1) with A% = N 27" which satisfies the
condition (2.8) with ¢ = 1, see also ref 4. The same argument holds for
the GREM® 12 which is again thermodynamically stable with ¢ = 1.

Remark 3. The relevance of the identities is evident considering that they reduce
the degrees of freedom a priori carried by each spin glass model. In the mean field
case for instance the method led to the rigorous proof of a property called replica
equivalence'®?? which can be viewed as an ansatz generalizing the ultrametric one.
The purely ultrametric identities (still lacking a rigorous mathematical derivation)
which are built in the Parisi solution of the SK model are not contained in the
Ghirlanda-Guerra ones.

Remark 4. It would be interesting to establish, or disprove, the same identities
in a stronger sense, i.e. everywhere in the temperature. One of the limits of the
method used to achieve our results is that it is intrinsically restricted to hold in
B-average, i.e. in every interval excluding at most isolated singularities. It is still
an open question if, in the spin glass phase, there are similar singularities or if
the identities hold just everywhere. The only existing results are evidences of
numerical nature of the validity of those identities everywhere.*¥
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4. PROOF

The statements (3.21) and (3.22) are proved respectively in the lemmata of
subsections 4.1 and 4.2. The proof uses only elementary methods like martingale
differences and classical inequalities. Let 2(o') = |A|~' Ha (o) be the Hamiltonian
per particle. We consider the quantity

R
> {1 (@®) G) = (r(c"))(G)} = AIG + A6 (4.25)
I=1
where
AG = Z [Av(Q[r(c?) G] - [h(c®)]21G])} (4.26)
AG = Z [AV(Q[h(c?)]RIG]) — Av(Q[h(cV)])AV(QIGD}  (4.27)

4.1. Stochastic Stability Bounds, Vanishing of A G

We follow the method of stochastic stability as developed in ref. 9.

Lemma 4.1. For every bounded observable G, see definition (10), we have that
for every interval [B1, B,] in the thermodynamic limit
B2

lim [ AGdB =0 (4.28)
A g,

Proof. We observe that deriving (G) with respect to the temperature

R
- azig) = A1) _{Av(Q[r(c") G] - Q[r(c")12[G])} (4.29)
=1
Integrating in d we obtain thanks to (4.26)
B2 _
/ AGap =9 (ﬂz)w (G) (B) ws0)

Remembering the assumption on boundedness of function G this proves the
lemma. =
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Remark 5. The previous lemma is related to a general property of disordered
systems which is known as stochastic stability (see ref. 1, 9). It says that the
equilibrium state in a spin glass model is invariant under a suitable class of
perturbation in all temperature intervals of continuity.

Lemma 4.2. The following expression holds:

R R
AG = —,3<G > @ik —2R D qrri+ RR+1Dqrirre2 > :
ki=1 =1
k#
(4.31)
Proof. For each replica/ (1 <! < R), we evaluate separately the two terms in

the right side of Eq. (4.26) by using the integration by parts (generalized Wick

formula) for correlated Gaussian random variables, x1, x5, . .., X,
- oW (xy, .oy Xp)
Av(x; ey Xp)) = Av(xix JAV| —— | . 4.32
V(X Y (X1, ey X)) E V(x; X ;) V( ox, ) (4.32)

j=1

It is convenient to denote by p (R) the Gibbs-Boltzmann weight of R copies of the
deformed system

L5 m(e)]

R) = , 4.33
p(R) ZAR (4.33)
so that we have
1 dp(R) R o~ BIHA(D)]
- = p(R Sotrr | = R p(R) —or . 4.34
a7 )(; ) PP "z (*39
We obtain
Av(Q(h(cV) G)) = ﬁAV > G HA(0") p(R) (4.35)
o, ..,o®
dp (R)
=n| X X oab ) @9

R
=B [Dqu,k) - R<Gq1,R+1>} (437)
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where in (4.36) we made use of the integration by parts formula and (4.37) is
obtained by (4.34). Analogously, the other term reads

Av(sz(h(a“))) QG)) = ﬁ Av ( > Y 6 (a<’>) PR+ 1)) (4.38)

o) () (R
dp(R+1)

= A Ge (0“),1/ Lo @39
(am (W__® ; * ) dH(y)

R+1
=8 [Z(G Grre) — (R+ 1)<GqRH,R+2>}

k=1
(4.40)

Inserting the (4.37) and (4.40) in Eq. (4.26) we finally obtain the expression
(4.31). O

4.2. Martingale Bounds, Vanishing of A, G

The method of the martingale differences to prove the self averaging of the
free energy, or in general to bound the fluctuations of extensive quantity, has been
applied in the context of spin glasses in ref. 28 for the SK case and in ref. 34 in
the case of finite dimensional models. Our formulation applies to both cases and
extends the previous results. For instance our method includes the non summable
interactions in finite dimensions®? and the p-spin mean field model as well as the
REM(® and GREM!* models.

Lemma 4.3. The free energy is a self averaging quantity, i.e. it exist a positive
function c(B) such that

V(A) = Av(A?) — AV(A)? < c(B)IA| (4.41)

Proof. For an assigned volume A we enumerate by the index & the interacting
subsets X from 1 to N, and considering the random partition function (2.13) we
define

Ay = AveIn Z(B), (4.42)

where the symbol Av; denotes the Gaussian integration performed only on the
first k random variables Jy. Clearly 4o = A(B) and An, = A(B). Introducing the
quantity

W = Ap — Aps1, (4.43)
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it holds
Na—1
A=AVA) = Y o (4.44)
k=0
and
VA = Y AV(YF) + 2> Av(Wp). (4.45)
k k>k
First we observe that the second sum is zero, being zero each of its terms. In fact
Av (VW) = AV (AV< (W Wr) = AV (Ve AV < (Wr ) (4.46)
and
AVSk(‘-IJk/) = AVSk(Akf - Ak/+1) =0 (447)

thanks to the property

AVEk(Akr) = A \4 k> K. (448)
We introduce now the interpolating Hamiltonian
Na
HY(0) = = Jio (4.49)
=1
with
t, ifl =k+1,
= (4.50)

1, otherwise,
and call €, its relative Gibbs-Boltzmann state. Defining the quantity

A() = Avgln Y e P, (4.51)
[Z=DN
by the fundamental theorem of calculus one has
Ay = A(0)+ By (4.52)

with

Vd At 1
B = / WO = p / AV (i 00s). (4.53)
0 0

Denoting by Avy integration with respect to the k-th Gaussian we have
AV(9) = (i — A P) = A [di — A AP) - (4.59)
= (Avis1(47) — [AV 1 (A0T).
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Since A4 and Bj differ by a constant with respect to Avy, their variance is the
same:

AV (V7)) = AV (Avis1 (47) — [Avis1(407)
= AV (Avi(B7) — [Avi1(BOT) - (4.55)

We proceed estimating the term Avy (B,%):

1 pl
Avii1(B) = Avpy / / AV (2 (Je+10511))AV <k (5 (Ji410k41)) stdsdt
o Jo
(4.56)
Applying twice the integration by parts (4.32) we get

1 1
AV]H_l(B]?) = IBZAiJrlAV;H_I/O /(; AVSk(Qt(O'k_H))AVEk(Q‘Y((TIH_]))Stdel‘

1 1
— 2B A}, Aviy / / AV < (Q(0%41)
0o Jo
x [1 = @ (0141) |) AV <i(Q(0r41)) st dsdlt
1l
~26 0t av [ [ Ava(@uonn)
0o Jo
x [1 = Q2(0k41)]) Avar (R (0k41)) s> tdsdt
1 1
+254A2+1AV]€+1 / / AVSk[l — Q§(6k+1)]
0o Jo
X Avgk[l — Qf(mﬁq)] s22dsdt
1 13
< 3Bk + 5B B (4.57)
The (4.55) and (4.57) together imply
1 13
AV (V) = 2B+ 5B AL (4.58)

> (%ﬁzAi( + %ﬁm;‘() : (4.59)

XCA

VA = Y Av(¥) <
k

By the assumption of thermodynamic stability with the formulation (2.11) and
using the inequality Y5 A% < (3_3 A%)* we obtain

V(A) < |A| (%ﬁ25+%ﬁ452) (4.60)
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which fulfills (4.41) with ¢(B) = {8%¢ + 13 p*¢>. O

Remark 6. The self-averaging property can also be proven by using “concentra-
tion of measure” inequalities. Indeed one can see that the random free energy A(8)
is a Lipschitz function of the coupling variables {Jx} xc, With Lipschitz constant
B+/ZTA]. Then, using Theorem 2.2.4 of ref. 33, one obtain ¥ (A) < 88%¢|A|.

Lemma 4.4. The internal energy is self averaging almost everywhere B, i.e.
definingu = U /|| and Vg(u) = Av (uz) — Av(u)* it holds in the thermodynamic
limit

B2
/ Vg(u)ydg — 0 (4.61)

Proof. The result is obtained in two steps which use general theorems of measure
theory. First from lemma 4.2 we obtain the convergence to zero almost everywhere
(in B) of the variance of the internal energy, then thanks to a bound on the
variance of the internal energy we apply the Lebesgue dominated convergence
theorem which gives the lemma statement. The sequence of convex functions
A(B)/|A| converges a.e. (in J) to the limiting value a(B) of its average-? and
the convergence is self averaging in the sense of lemma 4.3. By general convexity
arguments [29] it follows that the sequence of the derivatives .A'(8)/| A| converges
to u(B) = da/(B) almost everywhere in 8 and also that the convergence is self
averaging. In fact the vanishing of the variance of a sequence of convex functions
is inherited, in all points in which the derivative exists (which is almost everywhere
for a convex function), to the sequence of its derivatives (see refs. 26,30). From
lemma 4.3 we have then

Vg(u)y - 0 B — a.e. (4.62)
In order to obtain the convergence in B-average we use the Lebesgue dominated
convergence theorem. In fact we prove that the sequence of variances of u is

uniformly bounded (in every interval [, 8,]) by an integrable function of 8. A
lengthy but simple computation which uses again integration by parts gives

Av (Z/lz)

Av( > JXJyQ(UX)Q(Gy)) (4.63)

X, YCA

> BALATAV[L - Q¥ (ox) — Q%(0y) + 62 (0x)Q (oY)
X, YCA

— 6Q(0x)Qoy)Qoxoy) + QL (oxoy)] < 14B%IA1PE*  (4.64)
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from which

Ve(u) < ﬁm(uz) < 14822, (4.65)

From this follows (4.61). a

Lemma 4.5. For every bounded observable G, see definition (10), we have that
for every interval [B1, B,] in the thermodynamic limit
B2
lim AGdB = 0 (4.66)
A7 Bi
Proof. Thanks to the Schwartz inequality

AG = Av(uG — Av(u)Av(G)) = Av(u — Av(w)][G — Av(G)]) (4.67)
< — Av@ PG — AV (G)P) = V2T (@)

(A,G)? < 2V (u) (4.68)
B2 B2 B2
‘/ AzGdﬂ‘ < / (A2GYdB/ By — B < V2B — B) / V(wydp — 0
B B B
(4.69)
O

Lemma 4.6. The following expression holds:
R
A G = —BR [Z(G g1, r+1) — (R + 1)(G q py1, rt2) + (@(6]1.2)} . (4.70)

k=1

Proof. In order to obtain the A, G we are left with the explicit evaluation of the
other term in (4.27) which simply gives

(Q(h(a"))) Av(QUG)) = |[1\—|Av < 3" Ha(o") pa (1)> (G)

o

dpA (1)
(l) G
~s (T el 8 @

= —B{(G){q1,1) — {g1,2)] (4.71)
Inserting the (4.40) and (4.71) in Eq. (4.27) we obtain the (4.70). O
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